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ABSTRACT

Individual behaviors and social relations influence each other. However, understanding the underlying mechanism remains challenging.
From social norms controlling human behavior to individual management of interpersonal relationships, rewards and punishments are some
of the most commonly used measures. Through simulating the weak prisoner’s dilemma in finite populations, we find that neither a simple
reward measure nor a pure punishment mechanism can extensively promote cooperation. Instead, a combination of appropriate punishment
and reward mechanisms can promote cooperation’s prosperity regardless of how large or small the temptation to defect is. In addition, the
combination spontaneously produces inhomogeneities in social relations and individual influence, which support the continued existence of
cooperative behavior. Finally, we further explain how cooperators establish a sustainable existence under the combination by investigating
the social relations at different moments in a small system. These results demonstrate that dispensing rewards and punishments impartially
in society is essential to social harmony.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0102483

Cooperation plays an important role in the development of
human civilization and society. How cooperation emerges in
human society, however, is both an evolutionary puzzle and
a practical one that has real implications for social harmony.
Recently, scientists have revealed multiple mechanisms for pro-
moting cooperation, one of which is population structure, as it
enables localized reciprocity. However, this explanation assumes
static social interactions, whereas human interactions are often
dynamic. To this end, we combine network reciprocity with a
reward–punishment mechanism to achieve coevolution of net-
work structure and individual behavior. The results show that an
appropriate combination of rewards and punishments can greatly
promote the prosperity of cooperation and maintain social order
and development.

I. INTRODUCTION

Cooperation is at the core of the success of human society.1–4

However, cooperation is costly: Cooperators contribute to the

collective at personal cost, whereas defectors only enjoy social wel-
fare. According to the principle of “survival of the fittest” in the
biological evolutionism, the low-payoff cooperative behavior will be
eliminated by the high-payoff defective behavior. Therefore, evo-
lution of cooperation has become a dilemma.5 The evolutionary
game theory established by Smith and Price6 and enriched by Smith,
Gintis, and Nowak7–9 provides a practical theoretical framework
for exploring the resource allocation behavior of participants with
bounded rationality. A large number of research works has exten-
sively explored the methods of promoting the defectors in a dilemma
to become cooperators under this framework.10–14

Inspired by spatial games, many works have focused on
exploring whether structured groups can promote the evolution
of cooperation.15 Among them, complex networks have significant
advantages in exploring the influence of different structures on
cooperation.15–22 They are efficient abstractions of the spatial struc-
ture of groups. Specifically, individuals are likened to nodes in a
network, and their relationships are described by edges between
nodes. In a well-mixed group, based on the basic rule of Darwinian
evolutionary selection, the extinction of cooperators is inevitable.23
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The spatial structure of a group offers a solution to this problem.5

It is introduced by the interaction of neighbors, and the group is
formed in the process of evolution, which protects cooperators from
being exploited by defectors.24 The complex spatial structures (also
called social diversity) has been proven to play a significant role in
promoting the evolution of cooperation.25,26

To date, most research on network games has aimed to describe
the evolution of strategies in static networks with different struc-
tural characteristics.24 However, in real-world social networks, the
network structure is dynamically changing.27 It has been recognized
that social relationships affect individual decision-making in social
networks and that personal behavior affects social relations.11,28–31

For example, in the work of Hanaki et al.,32 players not only learned
to change their strategies but also to choose to interact with other
players by creating and/or severing ties. The results showed that
cooperation significantly improves when connections are costly.
Rand et al.11 compared networks with different update speeds and
concluded that dynamic networks promote cooperation better than
static networks in frequently updated networks. Therefore, enrich-
ing and developing evolutionary games require coevolution between
strategies and the population structure. Just as in social life, peo-
ple are not isolated individuals, and various interactions continue to
occur. Under multiple needs, each person develops a unique person-
alized network over the advancement of time. The phenomenon of
individuals interacting to generate connections in social groups has
attracted widespread attention in economic societies.33–35

Apart from social diversity, attributes, such as reputation,
teaching activities, pure reward mechanism, and pure punishment
mechanism in social life, also affect the emergence of cooperative
behavior.36–39 In particular, teaching activities40 are considered to be
a developmental attribute of participants. Simple rules of coevolu-
tion may cause highly dispersed teaching activities from the initial
nonpreferential setting, leading to heterogeneous leadership in the
evolutionary process,40–44 thereby promoting cooperation in social
dilemmas. A more efficient approach to promoting cooperation
is to establish reward or punishment mechanisms.45–51 For exam-
ple, Yang et al.52 proposed a reward mechanism in which group
members determine the allocation of the bonus raised by the tax
in the public goods game experiment, which showed that endoge-
nous rewards effectively promote the contribution of public goods.
However, an enormous amount of research has focused on fines for
defectors.50,53,54 It has been found that under these mechanisms, a
single punishment cannot promote cooperation under all circum-
stances. Wu et al.55 analyzed four comparative experiments and
concluded that expensive punishments will not promote cooper-
ation. However, rewards and punishments coexist in real social
management. The above works only consider the reward mecha-
nism or punishment mechanism respectively, lacking the synergy
between the two processes. It has even been concluded that rewards
or punishments do not always promote cooperation.50,55 In contrast,
we focus on the evolution process of cooperation under the syn-
ergy of reward mechanism and punishment mechanism, so as to
explore the optimal reward and punishment intensity in different
social environments.

In this work, we propose a new combined reward–punishment
mechanism (RPM) model to regulate individual behaviors for
maximizing collective benefits. The simulation results suggest that

the pure reward mechanism (RM) hinders the prosperity of cooper-
ation, and the pure punishment mechanism (PM) promotes coop-
eration only when the temptation to defect is great, but the RPM
makes up for this shortcoming and significantly improves the level
of cooperation. These phenomena indicate that our RPM is suc-
cessful, and fair rewards and punishments are significant to social
harmony, which is in line with the general law of social governance.
The government requires strict laws; additionally, relevant prefer-
ential or encouraging policies are also necessary to promote the
standard progress of society. In addition, the RPM builds a bridge
between social relationships and individual behaviors, realizing their
coevolution. Under this coevolution, the heterogeneity of social rela-
tions and individual influence occurs spontaneously. This finding
provides insights for revealing the origin of heterogeneous networks
from the perspective of evolutionary game theory, which is widely
explored.40,56–60

II. MODEL

A. Reward–punishment mechanism

Human interactions are not random but are structured in social
networks. Importantly, ties in these networks are often dynamic.
These changes may be due to the break in friendships caused by the
betrayal between friends or due to the gradual expansion of personal
social relations. We merge the two cases by introducing an RPM on
social relations to investigate the coevolution of network structure
and individual behavior.

The PM is in line with the common saying, “Three strikes and
you’re out.” When a friend betrays you many times beyond your
patience, you may sever ties with him or her. Ignoring the differ-
ences in individual patience, a person’s patience can be generalized
to the tolerance of society. If society values or is sensitive to trust,
one betrayal will lead to the breakdown of a friendship. However,
if a society has a high tolerance for betrayal, even if a person has
been betrayed many times, he or she will keep in touch with the
betrayer. Formally, consider a social network G = (V , E ) where the
nodes V = {1, . . . , N} correspond to individuals and each edge in
the set E ⊆ V × V represents a 2-player game between neighbor-
ing individuals. Define the weight Cd

xy of each link as the cumulative
number of times that individual x is betrayed by neighbor y, which is
asymmetric and time dependent. Define k1 ∈ [0, 1] as the penalty or
tolerance factor, which indicates that the larger the k1 is, the lower
the society’s tolerance, and vice versa. Assume that the probability
of x severing contact with y is as follows:

P1
x9y = tanh

(

k1C
d
xy

)

=
ek1Cd

xy − e−k1Cd
xy

ek1Cd
xy + e−k1Cd

xy

, (1)

which means that the more times y betrays x, the larger the proba-
bility that x severs ties from y.

The RM is used to model the expansion process of an individ-
ual friendship network. When a person’s influence accumulates to
a certain level, his or her social circle will expand accordingly. For
example, if you are influential in a village, the villagers are likely
to choose you as the village chief. As a result, you will know the
mayor or other village chiefs when you attend a town committee
meeting. This phenomenon involves society’s evaluation criteria for

Chaos 32, 103104 (2022); doi: 10.1063/5.0102483 32, 103104-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

excellence. Low social standards mean that individuals need to be
only generally good (influential) to activate reward behaviors to
expand their social circle. In contrast, high social standards indicate
that the threshold for triggering rewards is high, and an individual
may need to be extremely excellent to develop his or her contacts.

Analogously, the teaching activity (or influence) Cs
x of indi-

vidual x is defined as the cumulative number of times that his or
her behavior is learned (or imitated) by neighbors with different
strategies. The teaching activities of individuals vary from person to
person, change over time, and represent the abilities of individuals
to make opponents learn their strategies. The higher the individual’s
teaching ability, the higher the probability of receiving a reward.
Like the PM, the RM considers a random reward rule. Individual
x randomly selects individual z /∈ ˜Nx, where ˜Nx is the set of neigh-
bors, including himself/herself, and creates a new link between them
according to the following probability:

P2
x→z = tanh(k2C

s
x) =

ek2Cs
x − e−k2Cs

x

ek2Cs
x + e−k2Cs

x
, (2)

where k2 ∈ [0, 1], called the reward or influence factor, reflects soci-
ety’s standard of excellence. The larger the k2 is, the lower the
society’s standard; therefore, it is easy to activate the reward behav-
ior. Conversely, the smaller the k2 is, the higher the threshold to
trigger the reward.

Finally, we argue that punishment (trust detection) and reward
(teaching) go hand in hand, not sequentially. It can be the same
neighbor who is selected for trust detection and teaching. For exam-
ple, a friend betrays you many times beyond your patience, you sever
ties with him or her. At the same time, he or she feels that your
behavior is successful and imitates your behavior.

B. Coevolution of structure and behavior

It should be noted that our mechanism can be applied to almost
all existing network evolutionary game models. In what follows,
we take the classic prisoner’s dilemma (PD) game, which has been
widely studied to explore complex cooperation mechanisms,1 as an
example to discuss the impact of the RPM on the evolution of coop-
eration. We choose the homogeneous Erdős–Rényi (ER) random
graph61 as the initial underlying network structure and consider the
stochastic strategy evolution rule, the reversed Fermi rule.62 Under
this rule, the behaviors of successful individuals are more likely to be
imitated by others.

In classic game theory, each game player can choose one of two
behaviors: cooperation (C) or defection (D). Once the behaviors are
determined in each game shot, they can get a payoff according to the
following payoff matrix:

A =

[

R S
T P

]

,

in which R, P, S, and T represent the reward for mutual coopera-
tion, the punishment for mutual defection, the sucker’s payoff, and
the temptation to defect, respectively. The game is a PD if T > R
> P > S. For the weak PD game,24 the payoff matrix can be sim-
plified to R = 1, P = S = 0, and T = b. Generally speaking, b takes
values from 1 to 2, which characterizes the extent of the advan-
tage of D against C. For the completeness of the experiment, in our

simulations, we expand the upper bound of b to 2.5. Note that when
k1 = k2 = 0.0, our model will degenerate into a traditional PD game.

The social relations among the population are abstracted by
undirected networks. Initially, we characterize the network struc-
ture as ER random graphs.61 In addition, in light of the resulting
heterogeneous distribution of social relations and individual influ-
ence, we compare the Barabási–Albert (BA) scale-free network56 as
the underlying network, see Sec. I in the supplementary material for
details. Finally, in order to verify that the results are in line with the
real world, we apply our RPM model to the real networks63 in Sec. G
of the supplementary material.

In many social environments, individuals imitate more suc-
cessful behaviors. We attempt to describe this phenomenon in the
language of evolutionary dynamics. After playing a round of a PD
game and gaining cumulative profits, individuals seek more suc-
cessful strategies by comparing their own earnings with those of
their neighbors. Although the behaviors of successful individuals
are more accessible for other individuals to imitate, such imitations
are not deterministic. Thus, a stochastic strategy evolution rule, the
reversed Fermi rule,62 is adopted to mimic the strategy evolution.
That is, each individual x randomly opts a neighbor y, and if they
have different strategies, then y adopts x’s strategy with a probability
of

WSy←Sx =
1

1+ exp[
(

5y −5x

)

/K]
, (3)

where K = 0.1 denotes the amplitude of noise and Sx and 5x are the
strategy and the payoff of x in the current round, respectively.

Initially, each agent evenly chooses cooperation or defection
with the same probability. Then, by repeating the above evo-
lution mechanism of structure and behavior [see Fig. 1(a) and
Algorithm 1], the system is pushed to the final steady state described
by the average proportion of cooperators (i.e., average cooperation
frequency) ρC and the stable distributions of the degree (i.e., num-
ber of neighbors) Deg and the teaching activity Cs. The steady-state
average cooperation frequency is an important indicator to measure
the degree of system cooperation emergence. Specifically, the sta-
tionary average frequency of cooperation ρC is determined within
104 time steps after discarding sufficiently long transient time steps.
Moreover, because the random initial state and RPM may intro-
duce additional disturbances, the final results are averaged over 50
independent realizations for each set of parameter values to ensure
accuracy. Unless otherwise noted, simulation results are obtained on
populations comprising N = 1000 individuals, each with six con-
nections on average (see Sec. F in the supplementary material for
other average number of connections).

III. RESULTS

A. Cooperative behavior under the

reward–punishment mechanism

In contrast to the traditional PD game (i.e., k1 = k2 = 0.0) in
ER networks, where cooperators disappear when a large tempta-
tion to defect exists, cooperative behavior persists under the RPM
with cluster formation to defend against the invasion of defectors.
See Figs. 1(b)–1(d) as an example of an intuitive illustration when
the temptation to defect is in the middle (b = 1.4). Furthermore, for

Chaos 32, 103104 (2022); doi: 10.1063/5.0102483 32, 103104-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0102483
https://www.scitation.org/doi/suppl/10.1063/5.0102483
https://www.scitation.org/doi/suppl/10.1063/5.0102483


Chaos ARTICLE scitation.org/journal/cha

(a)

(b)

(c)

(d)

FIG. 1. Coevolution of network structure and behavior under the RPM. Blue and red represent cooperation and defection, respectively. (a) The microprocess of RPM. The
currently selected individual is regarded as an x-type individual; y1-type and y2-type individuals represent the selected neighbors for trust detection and teaching, respectively;
the z-type individual represents the selected individual for expansion of contacts. Note that y1 and y2 can be the same neighbor. (b)–(d) Macro snapshots of the PD game
under the RPM at b = 1.4 with k1 = k2 = 0.0 (b), k1 = k2 = 0.6 (c), and k1 = 1.0 and k2 = 0.2 (d).

different temptation to defect, Fig. 2 compares the optimal average
cooperation frequency in the steady state under our model (ρ

opt
C )

and the traditional PD game (ρTra
C ). Compared to the traditional

PD game, our model can significantly improve cooperation, espe-
cially under a large temptation. The corresponding optimal solu-
tions (k∗1 , k∗2) are all greater than 0, reflecting the significance of the
combination of social reward and punishment in promoting social
cooperation. In addition, not only the optimal solution, for any
k1, k2 > 0 [see Figs. 3(a)–3(d)], compared with the traditional PD
game, in which the steady-state average cooperation frequency keeps
high for a short period of time with the increase of the temptation of
defect and then rapidly declines to 0, under our mechanism, it first
remains high for a long time, then rapidly drops, and finally slowly
drops to a steady state. Cooperative behavior persists in populations
with fairly high temptation to defect.

It is worth pointing out that there is an interesting phe-
nomenon in Fig. 3(b), where there is a small “convex”; that is, near
the inflection point, when the temptation to defect increases, the
cooperation frequency increases. For example, when k1 = 0.4, the
cooperation frequency of b = 1.3 is less than that of b = 1.4. A
survey of the results of 50 independent realizations [Fig. A2(ce) in
the supplementary material] found that this is because the steady
state in some cases at the inflection point (b = 1.3) is all defec-
tion. To better explain this phenomenon, we need to know how
the intensity of reward and punishment affects the evolution of
cooperation.

Figure 3(e) shows that when there is no RM (k2 = 0.0),
punishment reduces the polarization of cooperation caused by

different temptations to defect, which characterizes the discrete
degree of cooperation frequency and is quantified by the standard
deviation std. Specifically, when there is no punishment (k1 = 0.0),
a small change in the temptation of defect can make the cooperation
frequency oscillate from 1 to 0, and the polarization (i.e., standard
deviation) of cooperation at this time is 0.4308. This polarization
indicates social and economic unrest and instability. As the inten-
sity of punishment increases, the mean level of cooperation (black
solid line with triangles) remains almost unchanged, while its polar-
ization decreases from 0.4308 (k1 = 0.0) to 0.1656 (k1 = 1.0), which
greatly stabilizes the social unrest caused by the different tempta-
tions of defect. In addition, the existence of punishment (k1 > 0.0)
weakens the influence of the large temptation to defect (b ≥ 1.15)
to support cooperation (compared to the case when k1 = 0.0). Espe-
cially when temptation is quite large, cooperators do not disappear,
in contrast to the effect in the traditional PD game. However, when
temptation to defect is small (b < 1.15), a pure PM does not pro-
mote cooperation. Therefore, it is important to dispense rewards
and punishments impartially. Now, we consider the case when the
RM exists, taking k2 = 0.8 as an example [Fig. 3(f)]. Regardless of
the value of temptation, cooperation first increases significantly and
then declines slowly with increasing punishment. The difference is
that the punishment required for the cooperation peak increases
with the increase in temptation to defect. This indicates that “exces-
sive punishment” is not desirable, and the greater the tempta-
tion to defect, the greater the punishment required. Furthermore,
from a horizontal perspective, as the intensity of reward increases
[see Figs. A1(n)–A1(r) in the supplementary material], greater
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ALGORITHM 1. RPM.

Input: Network G(N, 〈Deg〉), parameters (b, k1, k2);

1 Initialize Cs, Cd = 0;
2 Initialize the strategy S by randomly allocating cooperation (1) or defection (0) with uniform probability for each node;
3 repeat
4 Randomly select node x, and neighbors y1, y2 ∈ Nx;
5 // Punishment (Trust Detection) & Reward (Teaching) Are Simultaneous

6 // Trust Detection & Punishment

7 if Sx == 1 and Sy1 == 0 then

8 Cd
xy1
++;

9 Calculate the punishment probability P1
x9y1

with Eq. (1);
10 if Reach the punishment threshold then
11 Break the link between x and y1;
12 end
13 end
14 // Teaching & Reward

15 if Sx 6= Sy2 then
16 Calculate the cumulative payoffs 5x, 5y2 of the game between x, y2 and their neighbors, respectively;
17 Calculate the strategy transition probability WSy2←Sx with Eq. (3);
18 if Successful strategy transfer/teaching then
19 Sy2 = Sx;
20 Cs

x ++;
21 Calculate the reward probability P2

x with Eq. (2);
22 if Reach the reward standard and Degx < N− 1 then

23 Establish a link between x and random z /∈ ˜Nx;
24 end
25 end
26 end
27 until convergence;

punishment is needed to promote the emergence of cooperation. See
Table I for details.

The same analysis is applicable to the influence of reward
on the evolution of cooperation. The existence of reward alone

[Fig. 3(g)] will annihilate cooperation because the RM enhances the
temptation that cooperators defect for more benefits. This
finding indicates that “pure reward education” is a failure.
However, as punishment increases [Figs. A1(t)–A1(x) in the

FIG. 2. The global maximum value (optimum value) ρ
Opt

C of function: (k1, k2)→ ρC for different values of b. (k
∗
1 , k
∗
2 ) is the corresponding global maximum point (optimum

solution). In addition, ρTra
C is the frequency of cooperation when k1 = k2 = 0.0.
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FIG. 3. The average frequency of cooperation in the steady state, ρC, as a function of the temptation to defect b (a)–(d), the penalty factor k1 (e)–(f), and the reward factor
k2 (g)–(h). See Fig. A1 in the supplementary material for complete parameters (b, k1, k2).

supplementary material], an increasing number of polylines are
“pulled up” (ρC � 0). From this perspective, it also indicates that
punishment acts as a counterbalance to reward and temptation to
defect and that sufficient punishment can offset the betrayal caused
by reward and temptation. After a polyline is “pulled up” [Fig. 3(h)],
cooperation increases with increasing reward, indicating that pun-
ishment and reward are also interdependent. The combination of
reward and punishment not only reduces the polarization of cooper-
ation, but it also increases the mean to obtain the optimal frequency
of cooperation (e.g., when b = 1.1 and k1 = k2 = 0.2, ρC = 0.9999).
As illustrated in Fig. 2, for different values of temptation to defect,

TABLE I. argmaxk1ρC = f(k1, k2, b), given k2 and b.

k2

b 0.0 0.2 0.4 0.6 0.8 1.0

1.0
1.05 k1= 0.2 k1= 0.2 k1= 0.2 k1= 0.2
1.1 k1= 0.0 k1= 0.2
1.15
1.2 k1= 0.2 k1= 0.4 k1= 0.4 k1= 0.4 k1= 0.4
1.3 k1= 0.4
1.4 k1= 0.6 k1= 0.6 k1= 0.6 k1= 0.6
1.5
1.6 k1= 0.6
1.7 k1= 0.8 k1= 0.8 k1= 0.8 k1= 0.8
1.8
1.9
2.0 k1= 1.0 k1= 0.8 k1= 1.0 k1= 1.0 k1= 1.0 k1= 1.0

the optimal frequency of cooperation can be obtained by adjusting
the intensity of reward and punishment.

We revisit the interesting phenomenon mentioned above. With
k1 = 0.4 and k2 = 0.8, when temptation to defect is small, the pun-
ishment is sufficient, and with the blessing of the reward, the coop-
eration is maintained at a high level. When temptation to defect
increases to 1.3, the punishment is not enough (see Fig. 2 and
Table I), and the reward is dominant at this time, resulting in some
situations equivalent to degenerating to only RM, in which the net-
work evolves to almost fully connected and the cooperators are
eliminated. However, as temptation to defect continues to increase,
for example, b = 1.4, punishment and reward are not enough at this
time, and the large temptation of defect dominates. Only a few coop-
erators severed ties with defectors early, forming a cluster to resist
they invasion. The phenomenon shows that it is important to formu-
late different levels of reward and punishment according to different
circumstances.

In Sec. A in the supplementary material, by analyzing the
time series of cooperative behavior, we provide a more detailed
explanation of why the RPM mechanism promotes cooperation.

B. Heterogeneous structure emerging with the

reward–punishment mechanism

From the previous discussion, we know that under the influ-
ence of the RPM, the network structure is constantly evolving.
In this section, we explore how the network structure evolves
and attempt to explain why the RPM can structurally promote
cooperation.

First, we count a typical time series of the average (/maxi-
mum) degree (/teaching activity) for both cooperators and defectors,
as illustrated in Fig. 4. Compared with the pure RM or PM, the
RPM induces cooperators to become influential leaders and hubs
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FIG. 4. Plots of a typical time series of the average (/maximum) degree Deg (a)–(d) [/teaching activity Cs (e)–(h)] for cooperators C and defectors D for different values of
(b, k1, k2).

with many friends. There is a super-hub cooperator (a coopera-
tion node with the maximum degree that is far greater than the
average degree), even when cooperators are initially at a disad-
vantage, which indicates that the RM prefers cooperators, even
if it is neutral. Consistent with the assumptions of many theo-
retical models, individuals seek connections with cooperators and
avoid defectors.11 Therefore, we predict that the existence of the
RPM makes homogeneous networks evolve into inhomogeneous
networks.

To verify our prediction, we count the degree distribution
of the network and the distribution of nodes’ teaching activities
over time. Figures 5(a)–5(d) show an increasing heterogeneity of
degree and nodes’ influence with time evolution. It has been shown
that hubs in heterogeneous networks play an important role in the
emergence of cooperation,16,64–66 because they tend to adopt a coop-
erative strategy and can effectively resist intrusion by defectors.
Consequently, heterogeneous networks can significantly promote
the emergence of cooperative behavior, placing cooperators in dom-
inant positions in the network. In summary, in previous studies,
hubs in heterogeneous networks become cooperators to incentivize
cooperation. However, in this study, we find an inverse process.
Under RPM, cooperators become hubs and leaders to promote
cooperation, which changes the networks from a homogeneous to
a heterogeneous state. This process also explains why most real-life
large-scale social networks present heterogeneity to some extent. At
the same time, we also theoretically analyze the expectation of indi-
vidual degree variation over time; see Sec. B in the supplementary
material for details.

Next, we reveal the mechanism that produces the heterogene-
ity of the degree distribution and nodes’ teaching activity distri-
bution in the network. An analysis of our model indicates that
the PM is more discriminating than the RM. First, punishment is

specifically for defectors. Cooperators disconnect only from defec-
tors and not from other cooperators. In addition, although reward
favors cooperation, it is not only for cooperators because the reward
received by an individual may connect with a defector. In other
words, under the RPM, individuals are willing to give potential
new friends the benefit of the doubt, which is reminiscent of a
form of forgiveness or leniency that is considered to promote
cooperation.67,68

For details, the evolution process behind the RPM can more
clearly explain why cooperators become influential leaders and hubs.
When a cooperator is selected, he or she will successfully teach the
connected defector whose payoff is lower and will have a high prob-
ability of disconnecting with the defector who always betrays him
or her (i.e., who has a high payoff). For the cooperator, first, his
or her payoff will increase, and the number of high-payoff defec-
tors around will decrease, resulting in a decrease in the probability
that he or she is successfully taught later (i.e., his or her time
scales to persist in cooperation become longer). At the same time,
his or her influence increases, and additional links are rewarded.
Regarding the network, the number of cooperators (defectors) and
the CC (CD) links increase (decrease). The whole process forms
a virtuous circle [see Fig. 6(a)], enables cooperators to develop
into leaders and hubs, and promotes the emergence of coopera-
tion. However, from the defectors’ perspective [Fig. 6(b)], they can
successfully teach and receive rewards in the beginning. However,
this temporary benefit will have serious consequences. The coopera-
tive neighbors around will gradually turn into defectors, and they
will be punished by being disconnected from more cooperators.
Thus, their payoffs and the probabilities of successful teaching grad-
ually decrease, which inhibits the reward. As a consequence, they
transform into cooperators or into loners who are segregated by
cooperators.
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FIG. 5. Log–log plot of the distributions of degree Pr(Deg) and teaching activity Pr(Cs) over time (a)–(d) and in the steady state (e)–(l) for different values of (b, k1, k2).
Here, T0 is the transient time, and SS represents the steady state.

The above analysis shows that the structural evolution mode
behind the RPM guarantees the emergence of cooperation. How-
ever, it remains unclear about how the parameters influence the
group structure at the final steady state and how the final population
structure correlates with the proportion of cooperation. Next, we
report simulations for which the evolution dynamics with varying
temptation to defect and the intensity of reward and punishment are
shown in Figs. 5(e)–5(l) (see Sec. C in the supplementary material
for more complete parameters).

First, when the punishment is insufficient [Fig. 5(g)], the over-
all node degree of the network is relatively larger. The reason is that,
in this case, the number of new links established due to rewards is
far greater than that of the links disconnected due to punishments,
which is equivalent to the case where only the RM works. How-
ever, when the punishment is sufficient, as punishment increases,
the maximum degree of the network decreases, and the proportion
of nodes with a large degree decreases (i.e., the degree heterogeneity
decreases). In contrast, with the increase in the reward, the maxi-
mum degree of the network increases, and the proportion of hub
nodes increases (i.e., the heterogeneity of the degree distribution
increases).

In turn, based on the final degree distribution, we can judge
whether the punishment is sufficient. On the double logarithmic
scale, the bell-shaped degree distribution corresponds to insufficient
punishment, while the heavy-tailed degree distribution means that
the punishment is sufficient. From the above discussion, we know
that when the punishment is not severe enough, it is equivalent to
the pure RM case, and the cooperative behavior will be eliminated.
Therefore, we can obtain the relationship between the degree distri-
bution and the cooperation ratio in the steady state under the RPM.
On the double logarithmic scale, the bell-shaped degree distribution
corresponds to a cooperation ratio of approximately 0, and the heav-
ier the tail of the degree distribution, the greater the cooperation
ratio.

Figures 5(i)–5(l) show that the distribution of teaching abil-
ity is consistent with the degree distribution. Therefore, regardless
of the structure of the initial interactive network, the introduction
of RPM makes the degree distribution of the network and the dis-
tribution of nodes’ teaching activities exceedingly inhomogeneous.
Moreover, this spontaneous inhomogeneity is an essential factor
in maintaining the emergence of cooperative behavior in the PD
game.
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FIG. 6. Flow charts from the perspective of a cooperator (a) and a defector (b). Pr , N, and1T indicate the probability, number, and time scale, respectively. Black flow arrows
indicate the processes of the traditional game, and orange and red ones are special for the RPM. Unless otherwise noted, a solid line indicates leading to, and a dotted line
indicates blessing.

In addition, we observe a highly positive correlation between
degree Deg and teaching ability Cs , which will be discussed further
in Sec. D of the supplementary material.

C. Learning patterns of cooperators and defectors

To further dissect how cooperators maintain sustainability
under the RPM, in this part, we explore the different learning pat-
terns of cooperators and defectors, microcosmically providing solid
experimental evidence for our two observations. First, the RPM
can incentivize cooperation, and it is vital to dispense rewards
and punishments impartially. Second, under the RPM, cooper-
ators are both influential leaders and hubs with many friends,
and there is a super-hub cooperator who has the maximum
degree.

To provide an intuitive illustration of how the evolution of
individual behavior and population structure are related, we visu-
alize a series of PD game snapshots in which the initial interaction
network is an ER network with 100 nodes and an average degree
of 3 (see Fig. 7 and Figs. E11–E18 in the supplementary material).
Note that in the following simulations, the initial network structure
and strategy remain unchanged to avoid introducing unnecessary
randomness.

First, for a traditional PD game with b = 1.5 [k1 = k2 = 0.0; see
Figs. 7(b)–7(e)], immense temptation gives an absolute advantage to
defecting, and the proportion of cooperation decreases sharply over
time. Specifically, defectors quickly occupy most nodes to become
leaders and then disperse and invade operations until cooperators
are eliminated.

If there is only the PM [k1 = 1.0, k2 = 0.0 in Figs. 7(f)–7(i)],
cooperation persists and is robust and stable, which is consistent
with the previous conclusion that a pure PM supports coopera-
tion by weakening the influence of b. Unlike the classic reciprocity
mechanism, such as the TFT strategy, the PM does not change an
individual’s behavior to respond to the behavior of the interacting
neighbors. Indeed, it is extreme to change a person’s cooperative
behavior just for a single defector in social networks, because other
interactive individuals may be more critical cooperators.69 Under
the PM, individuals do not have to give up cooperation to punish
free-riders, but avoid contacting them and exclude them from the
benefits of future cooperation, thereby inhibiting the occurrence of
betrayal. In addition, the PM will not reduce the benefits for cooper-
ators, but defectors will pay for their actions. The costly punishment
will deter some individuals who would have defected otherwise from
defecting easily. It also makes it more likely that some punished
defectors will turn to cooperation in the future. We can see that the
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FIG. 7. (a) Plot of a typical time series of cooperation frequency, ρC , for different (k1, k2). (b)–(u) Snapshots of the PD game under the RPM at different time steps t and the
intensity of reward and punishment (k1, k2). The blue dots represent cooperators, the red dots represent defectors, and the sizes of the dots correspond to their degrees.
Here, N = 100, 〈Deg〉 = 3, and b = 1.5 with (k1, k2) = (0.0, 0.0) (b)–(e), (k1, k2) = (1.0, 0.0) (f)–(i), (k1, k2) = (0.6, 0.4) (j)–(m) and (n)–(q), and (k1, k2) = (0.0, 0.2)
(r)–(u).

correlation is positive: The more punished defectors there are, the
greater their tendency to cooperate. In addition, the rupture of social
relations caused by punishment effectively prevents the invasion of
betrayers.

However, when the reward and punishment coexist (here, opt-
ing for k1 = 0.6, k2 = 0.4), cooperation is promoted more than
under the pure PM [Fig. E19(c) in the supplementary material],
and there are two different evolution patterns of cooperation pro-
portion. Figures 7(j)–7(m) show the emergence of a giant com-
ponent consisting of only cooperators protecting cooperation.
Figures 7(n)–7(q) show the two independent connected compo-
nents, C-cluster and D-cluster, which prevent defectors from inva-
sion. In the early stage of the game, under the enormous tempta-
tion to defect (here, b = 1.5), the amount of cooperators decreases
sharply over time. However, due to the existence of the RPM, the
super-hub cooperator (the highest degree) appears for the two sit-
uations discussed above. The difference is that for the first case, in
addition to the super-hub cooperator, other hub cooperators form a
closely connected cluster [Figs. 7(j) and 7(k)]. When the proportion
of cooperators decreases to a certain level, the payoff, 5, of defec-
tors located at the boundary of the C-cluster is significantly lower
than that of the cooperators [see Figs. 8(a) and 8(b)]. The coopera-
tors can, in turn, successfully teach the defectors. At this moment,
teaching is the primary action for cooperators, supplemented by the
punishment of disconnection. Over time, the cooperators occupy

the hub nodes and finally form a giant connected component in the
network [Figs. 7(l) and 7(m)]. For the latter, although there is also a
super-hub cooperator, the cooperators present separated star-like or
filamentous clusters [Figs. 7(n) and 7(o)]. Only the super-hub coop-
erator has a higher benefit than the defectors among the individuals
on the border between the C-cluster and the D-cluster [Fig. 8(c)].
Currently, punishment for link breaking is the primary action for
cooperators, and teaching is supplemented. This is reduced almost
to the pure PM case. As shown in Fig. 7(i), the network eventually
develops into two independent clusters [Fig. 7(q)].

For the completeness of the discussion, we also analyze the case
with only reward [k1 = 0.0, k2 = 0.2, as shown in Figs. 7(r)–7(u)].
As mentioned in Secs. III A and III B, the RM does not promote
cooperation. At the beginning of the game, the trend of ρC is the
same as in Figs. 7(j) and 7(k). However, when the proportion of
cooperation rises to a certain level, the payoff, 5, of defectors located
on the border between clusters C and D is greater than those of their
cooperative neighbors [Figs. 7(r) and 8(d)], and cooperation begins
to decline sharply. Therefore, once the cooperator who cannot stop
interacting fails in teaching, he or she can only face the invasion of
defectors. Additionally, we further verify that the pure RM does not
promote cooperation, but only reduces it [Figs. E11, E12, and E19(a)
in the supplementary material].

Therefore, it is significant to dispense rewards and punishments
impartially in social networks, and the combination of
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FIG. 8. The payoff, 5, for different DC or CD links. (a) and (b) correspond to Figs. 7(j) and 7(k), respectively; (c) corresponds to Fig. 7(n); and (d) corresponds to Fig. 7(r).
Individual labels are represented by numbers. The labels of defectors are above the corresponding cross signs and that of cooperators are on the right side of the corresponding
open circles.

appropriate punishments and rewards can better incentivize coop-
eration. In the process of the RPM evolution, cooperators become
influential hubs, which causes network structural heterogeneity and
promotes the emergence of cooperative behavior.

IV. DISCUSSION

In many social situations, individuals choose how to inter-
act with others and with whom they interact. These two processes
are called behavioral dynamics and structural dynamics, respec-
tively. The coevolution of structure and behavior is a critical and
fundamental problem.32 Furthermore, rewards and punishments
are essential factors that affect people’s behavioral choices and are
widespread in the real world, from biological systems to economic
and social systems. In this context, we build a bridge between these
two dynamics through a social RPM to realize the coevolution of
behavior and interaction.

Taking the PD game as an instance, we report simulations on
both constructed and real networks showing that the frequency of
cooperation is greatly improved if appropriate punishments and
rewards are introduced simultaneously, especially under immense
temptation to defect. The results also demonstrate that dispensing
rewards and punishments impartially in society is essential to social
harmony. For the case on the real networks,63 see Sec. G in the
supplementary material.

Then, we pay attention to the following two questions: Why can
the appropriate punishment promote cooperation (rather than the
larger, the better) under the RPM? Moreover, why does the optimal
punishment increase as the temptation to defect increases? These
phenomena are in line with reality. In general, different punish-
ments are set according to the severity of the circumstances. In our
model, the level of temptation to defect represents the seriousness of
the circumstances. Thus, hierarchical and appropriate punishments
can better promote cooperation.

Concurrently, undesirable “excessive punishment” also indi-
cates that excessively frequent network updating is undesirable.
Rand et al.11 verified that rapid network updating promotes coop-
eration, and in viscous dynamic network conditions, cooperation
decreases over time and is eventually eliminated. We conclude that
it is not advisable to update the network too frequently. In con-
trast, an appropriate network update frequency can better promote
cooperation.

In the RPM, punishment is designed explicitly for defectors
since cooperators will break the links only with defectors, not with
cooperators. However, the reward is not only for cooperative behav-
ior because the social reward may link individuals with defectors.
In other words, individuals never sever ties with their cooperators,
but they sometimes establish new connections with defectors, which
is reminiscent of forgiveness or leniency that is believed to pro-
mote cooperation.67,68 This raises the question of what will happen
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if we directly specify the establishment of a new connection with a
randomly chosen cooperator when rewarding. We conduct a set of
control experiments (see Sec. H in the supplementary material) to
prove that establishing contact with defectors is a tolerant behavior
that supports cooperation.

In addition, we find that the RPM will cause the network to
spontaneously generate heterogeneity in node degrees and teach-
ing activities despite all the mechanisms being homogeneous and
unbiased when we set up the model. To some extent, this finding
explains why networks with heterogeneous distributions are more
common in the real world from the perspective of evolutionary game
theory. We believe that this framework can be further generalized
to account for other forms of heterogeneity related to individual
behaviors.

To prove that heterogeneity occurs spontaneously, we do
not introduce any heterogeneity in our experimental settings. In
the main text, we consider the homogeneous ER underlying net-
work and make new links randomly (RA). Therefore, we con-
duct two sets of control experiments reported in Sec. I of the
supplementary material, in which we consider a heterogeneous
underlying structure: the BA scale-free network and a method for
making new contacts, “the rich get richer,” preferential attachment
(PA).

The two sets of control experiments show that the experimen-
tal results in ER/RA also appear in BA and PA. Thus, we can draw
certain conclusions. First, neither the underlying network structure
nor the method for making new links is the fundamental cause of
the RPM promoting cooperation. The influence of these factors can
be adjusted through the intensity of rewards and punishments. Sec-
ond, BA and PA have similar effects for the RPM, both of which
promote cooperation, so that their punishments required for opti-
mal cooperation are less. However, the two are not exactly the same.
PA, because it acts only on the RM, has no effect on the pure PM or
non-RPM. However, the RM, the PM, and traditional PD games are
all affected by BA.

In this paper, our social reward–punishment process is simplis-
tic, and we have considered only a classical behavioral rule in which
players can either cooperate or defect against all of their partners.
Thus, many obvious extensions are easily conceivable. For example,
we can take into account that the tolerance varies from person to
person or players have different behaviors to different partners. The
coevolution of interaction and behavioral dynamics has qualitatively
different consequences for collective outcomes and is worth further
development.

SUPPLEMENTARY MATERIAL

See the supplementary material for complete studies on the
combination mechanism of social reward and punishment. In addi-
tion to providing experimental supplements with different param-
eters and theoretical analysis in Secs. A–E, we also provide some
control experiments, such as different initial average number of con-
nections (〈Deg〉 = 4, 8 in Sec. F), real-world social networks (Sec. G),
a discriminatory reward mechanism (RMWC in Sec. H), heteroge-
neous BA scale-free network (Sec. I), and preferential attachment in
making a new link (PA in Sec. I).
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